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Abstract : A blimp is a small airship that has no metal framework and collapses 
when deflated. In the first part of this paper, dynamic modeling of small 
autonomous non rigid airships is presented, using the Newton-Euler approach.  This 
study discusses the motion in 6 degrees of freedom since 6 independent coordinates 
are necessary to determine the position and orientation of this vehicle. Euler angles 
are used in the formulation of this model. In the second part of the paper, path 
planning is introduced. Motion generation for trim trajectories is presented. This 
motion generation takes into account the dynamic model presented in the first part. 
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1. Introduction 
 
Since their renaissance in early 1980’s, 
airships have been increasingly considered 
for varied tasks such as transportation, 
surveillance, freight carrier, advertising, 
monitoring, research, and military roles. 
More recently, attention has been given to 
the use of unmanned airships as aerial 
inspection platforms, with a very important 
application area in environmental, 
biodiversity, and climatological research 
and monitoring [CAM99, KHO99,  
PAI99].  The first objective of this paper is 
to present a model of a small autonomous 
blimp : kinematics and dynamics. For 
kinematics, Euler angles are presented. For 
dynamics, a mathematical description of a 
dirigible flight must contain the necessary 
information about aerodynamic, structural 
and other internal dynamic effects (engine, 

actuation) that influence the response of 
the blimp to the controls and external 
atmospheric disturbances. The blimp is a 
member of the family of under-actuated 
systems because it has fewer inputs than 
degrees of freedom. In some studies such 
as [FOS96, HYG00, KHO99, ZHA99], 
motion is referenced to a system of 
orthogonal body axes fixed in the airship, 
with the origin at the center of volume 
assumed to coincide with the gross center 
of buoyancy. The model used was written 
originally for a buoyant underwater vehicle 
[FOS96, ZIA98]. It was modified later to 
take into account the specificity of the 
airship [HYG00, KHO99, ZHA99]. In 
[BES01], the origin of the body fixed 
frame is the center of gravity. 
The second objective of this paper is to 
generate a desired flight path and motion to 
be followed by the airship. A mission starts 
with take-off from the platform where the 
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mast that holds the mooring device of the 
blimp is mounted.  Typically, flight 
operation modes can be defined as : take-
off, cruise, turn, landing, hover…[BES01, 
CAM99, PAI99, ZHA99]. After the user 
has defined the goal tasks, the path 
generator then determines a path for the 
vehicle that is a trajectory in space. In this 
paper, the trajectories considered are 
trimming or equilibrium trajectories. The 
general condition for trim requires that the 
rate of change of the magnitude of the 
velocity vector is identically zero, in the 
body fixed frame. In this paper we propose 
some motion generation on trim helices to 
be followed by the airship.  

2. AIRSHIP DYNAMIC MODELING 
 
2.1.  Kinematics. 
A general spatial displacement of a rigid 
body consists of a finite rotation about a 
spatial axis and a finite translation along 
some vector. The rotational and 
translational axes in general need not be 
related to each other.  It is often easiest to 
describe a spatial displacement as a 
combination of a rotation and a 
translation motions, where the two axes 
are not related. However, the combined 
effect of the two partial transformations 
(i.e rotation, translation about their 
respective axes) can be expressed as an 
equivalent unique screw displacement, 
where the rotational and translational 
axes in fact coincide. The concept of a 
screw thus represents an ideal 
mathematical tool to analyze spatial 
transformation [ZEF99]. The finite 
rotation of a rigid body does not obey to 
the laws of vector addition (in particular 
commutativity) and as a result the angular 
velocity of the body cannot be integrated 
to give the attitude of the body. There are 
many ways to describe finite rotations. 
Direction cosines, Rodrigues – 
Hamilton’s (quaternions) variables 
[FOS96], Euler parameters [WEN91], 
Euler angles [BES01], can serve as 
examples. Some of these groups of 

variables are very close to each other in 
their nature [ZEF99].  The usual minimal 
representation of orientation is given by a 
set of  three Euler angles, assembled with 
the three position coordinates allow the 
description of the situation of a rigid 
body. A 3*3 direction cosine matrix (of 
Euler rotations) is used to describe the 
orientation of the body (achieved by 3 
successive rotations) with respect to some 
fixed frame reference.  
Two reference frames are considered in 
the derivation of the kinematics and 
dynamics equations of motion. These are 
the Earth fixed frame and the body 
fixed frame (figure 1). The position 
and orientation of the vehicle should be 
described relative to the inertial reference 
frame while the linear and angular 
velocities of the vehicle should be 
expressed in the body-fixed coordinate 
system. This formulation has been first 
used for underwater vehicles [FOS96, 
ZIA98].  
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In this paper, the origin C of coincides 
with the center of volume of the vehicle. 
Its axes 
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with  φ roll, θ pitch and ψ yaw angles. 
The orientation matrix R is given by:   
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R s c c c s s s c s s s c
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Where ( )coscθ θ= and ( )sinsθ θ=  
)3(SOR ∈ denotes the orthogonal rotation 

matrix that specifies the orientation of the 
airship frame relative to the inertial 
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reference frame in inertial reference 
frame coordinates. SO(3) is the special 
orthogonal group of order 3 which is 
represented by the set of all 3*3 
orthogonal rotation matrices that 
characteristics are : 

1)det(3*3 == RandIRRT    eq 3 

I3*3 represents the 3*3 identity matrix. 
This description is valid in the region 

22
πθπ

<<− . A singularity of this 

transformation exists for:  

Zkk ∈±= ;
2

ππθ . 

If we use the manipulators formulation, at 
each instant, the configuration (position 
and orientation) of the airship can be 
described by an homogeneous 
transformation matrix corresponding to 
the displacement from frame to frame 

. The set of all such matrices is called 
SE(3), the special Euclidean group of 
rigid-body transformations in three 
dimensions [SEL96]. 
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SE(3) is a Lie group. represents the 
set of 3*1 real vectors and  the set of 
3*3 real matrices. 
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Let’s introduce  as the linear 

velocity of the origin C expressed in  

and   as the angular velocity 

expressed in . The kinematics of the 
airship can be expressed in the following 
way : 
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If we use the metric formulation, the 
tangent space of SE(3), denoted by se(3) 
is given by: 
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where sk(Ω) represents the skew-matrix :
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This matrix has the property that for an 
arbitrary vector  3ℜ∈U

UUsk ×Ω=Ω)(    eq 8 

× : represents the cross vector product in 
. 3ℜ

This tangent space se(3) has the structure 
of a Lie algebra.  
 
2.2.  Dynamics. 
 
In this section, analytic expressions for 
the forces and moments on the dirigible 
are derived. It is advantageous to 
formulate the equations of motion in a 
body fixed frame to take advantage of the 
vehicle’s geometrical properties. 
Applying Newton’s laws of motion 
relating the applied forces and moments 
to the resulting translational and 
rotational accelerations assembles the 
equations of motion for the 6 degrees of 
freedom. The forces and moments are 
referred to a system of body-fixed axes, 
centered at the airship center of volume. 
We will make in the sequel some 
simplifying assumptions : the earth fixed 
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reference frame is inertial, the 
gravitational field is  constant, the airship 
is supposed to be a rigid body, meaning 
that it is well inflated, the aeroelastic 
effects are ignored, the density of air is 
supposed to be uniform, and the influence 
of gust is considered as a continuous 
disturbance, ignoring its stochastic 
character [MIL73, TUR73].  The 
deformations are considered to be 
negligible. The buoyancy system lifetime 
will be limited by a number of 
components and factors. Included is the 
corrosion of unprotected airship skin, 
degradation of the airship skin due to 
thermal cycling and temperature exposure 
and buoyant gas leakage. High 
temperature will increase permeability of 
the airship skin and increase leakage. 
Introducing all these factors into the 
dynamic model would result in very 
complicated partial differential equations. 
Assume that the airship move in a trim 
manner and the flight mode is aerostatics, 
then the buoyancy is compensated by the 
weight force, the aerodynamic forces can 
be neglected as well as the different linear 
and angular accelerations in the body fixed 
frame. Let’s assume that the forces 
developed by the two vectored lateral 
helices are equal .  The 
dynamics model is expressed in the body 
fixed frames as [HYG00]: 

1 2F F F= =

 
Forces equations : 
Axial force : 
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Yaw moment : 
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where : 
ijO is the jth coordinate of the origin of the 

actuator i. 
1x xO O O3x= +  and . 1 3z zO O O= + z

 
From these equations we can derive 3 
nonholonomic constraints : 
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Third nonholonomic constraint: 
 

( )( )( )
( )( )( )

( ) ( )
( ) ( )( )

( ) ( ) ( )

2 2

2 2

2 2

1
2

1
2

sin cos cos 0

z z y x z

x x y z x

x z xz

x z

z x

O M wq M rv M a q r a rp

O M qu M vp M a q p a rp

J J pr I r p

M a vp uq a wq vr

a Fg a Fgθ θ φ

− − + −

− − + + −

− − − −

− − − −

− + =

eq 17 

3. Trim trajectories 

3.1. Path generation 
 
The fundamentals of flight are in general : 
straight and level flight (maintenance of 
selected altitude), ascents and descents, 
level turns, wind drift correction and 
ground reference maneuvers. Trim is 
concerned with the ability to maintain 
flight equilibrium with controls fixed. A 
trimmed flight condition is defined as one 
in which the rate of change (of magnitude) 
of the aircraft’s state vector is zero (in the 
body-fixed frame) and the resultant of the 
applied forces and moments is zero. In a 
trimmed maneuver, the aircraft will be 
accelerated under the action of non-zero 
resultant aerodynamic and gravitational 
forces and moments, these effects will be 
balanced by effects such as centrifugal and 
gyroscopic inertial forces and moments. 
The trim problem is generally formulated 
as a set of nonlinear algebraic equations. 
 

0u v w p q r= = = = = =  
 
Using  eq 5, the angular velocity can be 
written as: 
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differentiating versus time and nullifying 
these derivatives, we obtain 
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from the same equation Eq 5, trimming 
trajectories are characterized by : 

0 0

0 0

0 0 0 0 0 0 0 0 0

cos( ) sin( )

cos( ) sin( )

sin( ) cos( )sin( ) cos( )cos( )

x x

y y

x a t b t

y a t b t

z z u v

ψ ψ

ψ ψ

θ θ φ θ φ

= +

= +

= =− + + w

w

eq 22 

where 

0 0 0 0 0 0 0 0

0 0 0 0

cos( ) sin( )sin( ) sin( )cos( )

cos( ) sin( )

x

y x

x

y x

a u v
b a

b v w
a b

θ θ φ θ φ

φ φ

= + +
=

=− +
=−

eq 23 

Integrating, we obtain 

( )
( ) ( )

( )

x s
r s y s

z s

⎛ ⎞
⎜= ⎜
⎜ ⎟
⎝ ⎠

⎟
⎟     eq 24 

with 

 
4th  International Airship Convention and Exhibition 



Hima, Bestaoui 6 Trim trajectories 
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where s represents the curvilinear abscissa 
and we suppose a uniform motion such that 

2 2 2
0 0 0es V t t u v w= = + +   eq 26 

the trajectories represented by these 
equations are helices with constant 
curvature and torsion. The most general 
trim condition resembles a spin mode. The 
spin axis is always directed vertically in 
the trim and pass through the origin of fℜ . 
The trim condition can be a turning (about 
the vertical axis), descending or climbing 
(assuming constant air density and 
temperature), side-slipping maneuver at 
constant speed. More conventional flight 
conditions such as hover, cruise, auto-
rotation or sustained turns are also trims. 

3.2. Motion generation : Problem 
formulation 
 
Once the path is planned, we are looking 
for the form of the motion that allows the 
airship to move along this path in a 
minimum time and a safe manner 
(without slipping or excitation of the 
harmful modes such as a roll oscillation). 
Since  the linear velocity is constant, the 
optimal time solution for this problem 
have minimum paths length. We may 
propose an optimization problem where 
the objective function may be  a mixed 
time energy function 

The total time can be expressed as:  

wvu
zz

T if
f .cos.cos.sin.cos.sin φθφθθ ++−

−
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eq 27 
while the energy is given by :  

( )2 2
3 . fE F F T= +    eq 28 

The overall problem consists now in 
determining some variables  

to minimize the specified objective 
function: mixed time-energy subject to 
three equality constraints (dynamics) and 
inequality constraints (actuators).  
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A proposed resolution method is 
introduced in the following section. 

3.3. Resolution of the minimum time 
problem 
 
Optimization theory gives a solution to 
the minimum time problem. It is located 
on the boundary of the admissible set, i.e. 
the airship moves using maximum 
actuator capabilities. The resolution will 
be organized as follows. First, this 
problem will be solved assuming that 
each constraint is saturated. Then the 
largest value of all the computed times 
will be taken as the predicted arrival time. 
In the first instance, we solve the three 
equality constraints (eq 39, eq 41, eq 42), 
this allows us to obtain versus 

. The multi-variable optimization 
problem becomes now a mono-variable 
optimization problem. Applying the 
second order necessary and sufficient 
conditions, we have to solve a set of five 
nonlinear equations. 
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.
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Solving 3 3max
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F F
µ µ µ µ
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lead to four simple second order 
polynomial equation of the form ; 
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0A
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A 1
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Solving  leads to a fourth order 
polynomial equation of the form; 

2 2
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0B
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B
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B 0

2
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4

4 =+ψ+ψ  
where the coefficients A and B are 
constants dependent on the parameters of 
the dynamic model and the initial and final 
configurations. We obtain two imaginary 
solutions, one real positive and one real 
negative. Depending on our goals and 
constraints, we choose the positive or 
negative solution. 
Thus the solution of the optimization 
problem can be found analytically. 
 

3.4. Resolution of the mixed problem 
In this section we treat the problem of 
finding helices, as well as the motion, 
that minimize both time and energy. The 
cost function is given by : 

( )22
3E t fJ J J F F T T= + = + + f  

the form of the cost function is valid in 
the sense that multiplying the square of 
the forces by the time rather than 
integrating them with respect of the time 
because trim trajectories imply a constant 
forces. simplification can be made on 
these equation to formulate this equation 
in the form of  rational polynomial 
equation done by : 
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differentiate  and nullifying its 
denominator lead to seven order 
polynomial equation : 

J
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0
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i

i
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J b
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∑  

from the seven solution derived from the 
last equation, we take that present a  
minimal cost.  
 
 

4. SIMULATION RESULTS 
 
The lighter than air platform is the AS200 
by Airspeed Airships. It is a remotely 
piloted airship designed for remote 
sensing. It is a non rigid 6m long, 1.4m 
diameter and 8.6 volume airship 
equipped with two vectorable engines on 
the sides of the gondola and 4 control 
surfaces at the stern. The four stabilisers 
are externally braced on the full and 
rudder movement is provided by direct 
linkage to the servos. Envelope pressure 
is maintained by air fed from the 
propellers into the two ballonets located 
inside the central portion of the hull. 
These ballonets are self regulating and 
can be fed from either engine.  The 
engines are standard model aircraft type 
units, The propellers can be rotated 
through 120 degrees. During flight the 
ruddervators (Rudder and elevator) are 
used for all movements in pitch and yaw. 
In addition, the trim function can be used 
to alter the attitude of the airship in order 
to obtain level flight or to fly with a 
positive of negative pitch angle. 

3m

Rudder and elevator can be moved from 
–25 to +25 degrees. The maximum 
velocity is 13m/s and the maximal height 
is 200m. Climb or dive angles should not 
exceed 30 degrees, particularly at full 
throttle. 
For the following initial conditions: 
θ = 0.44 rad;φ = 0.3 rad  
we obtain the following linear and 
angular velocities ; 

2.57
-4.35 /
-2.62

u
v m
w

=⎛ ⎞
⎜ ⎟=⎜ ⎟
⎜ ⎟=⎝ ⎠

s s

ad

  
-1.59

1 /
3.23

p
q rad

r

=⎛ ⎞
⎜ ⎟=⎜ ⎟
⎜ ⎟=⎝ ⎠

The trim values for the inputs are : 
3100 ; -13.53 ; -0.43trim trim trimF N F N rµ= = =

 
Figure 2 presents the trim trajectory: a 
helix with constant curvature and torsion, 
while figure 3 presents its projection on the 
x-y plane. Figure 4 presents respectively 
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the angles ( , , )θ φ ψ and figure 5 the 

derivatives : 
. . .
x y z⎛ ⎞

⎜ ⎟
⎝ ⎠

. 

Depending on the initial conditions, we 
have to consider the propulsion constraints 
on a given order. The most basic constraint 
is the limitation of the main thruster, then 
we have to consider either the constraint on 
the tail thruster or the tilt angle. Figure 6 
shows the set of initial conditions 
( ),θ φ usable for a forward flight when 
considering only the limitation on F, while 
figures 7 and 8 show respectively, the set 
of initial conditions when we add the 
constraint on the tail thruster and the tilt 
angle.   
 
5. CONCLUSIONS 
 
Airships are a highly interesting study 
object due to their stability properties. 
The classical theory of airship stability 
and control is based on a linearised 
system of differential equations usually 
obtained by considering small 
perturbations about a steady flight 
condition. However, the constraints of 
staying within the linear flight regime are 
excessive. The design of advanced 
control system must take into account the 
strong non linearities of the dynamic 
model. In this prospect, in the first part of 
this paper, we have discussed kinematics 
and dynamics of an airship, using 
Newton Euler approach. A direct 
generalization of this model is to 
introduce the effects of the vertical and 
horizontal control surfaces. 
In the second part of this paper, we have 
discussed caracterisation of some helices 
for airships.  Trimming trajectories have 
been presented. They consist in helices 
with constant curvature and torsion.  
When specifying a trajectory, the 
physical limits of the system must be 
taken into account. For trim flights, we 
propose a motion generation problem by 
minimizing the traveling time, given 

realistic constraints, the generated forces 
and the tilt angle.  
Our future prospect is how to steer the 
configuration of a mechanical system 
from one point to another in 3D.  
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Figure 2 : 3D helix 
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Figure 3 : projection in the x-y plane 
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Figure 7 : the angle ψ  
 

 
 
Figure 8 : possible initial conditions for 
F=Fmax 
 
 

 
Figure 9 : possible initial conditions for 
F=Fmax and F3 ≤ F3max 
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Mixed cost simulation results 
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Figure 10 : 3D helix 
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Figure 10 : projection in the x-y plane 
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Figure 12 
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Figure 13 : ψ  
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